Z\&FFT A;L;M;P;W;DIO
[1] ค Calculate complex FFT (Fast Fourier Transform).
[2] $\square I O \leftarrow 0$
$\left[\begin{array}{ll}\mathrm{A} \leftarrow((\mathbb{M} \leftarrow\lfloor 2 \oplus W \leftarrow \rho, A) \rho 2) \rho A & \text { 9 Structure data as } 2 \text { by } 2 \text { by ... array } \\ {[4]} & \rightarrow(10=M) / L 3,0\end{array} \quad\right.$ o If 2 points loop once, if 1 exit
[5] ค Compute first quadrant cosine,sine array
[6] a Get second quadrant by replication
[7] $W \leftarrow(1 \downarrow \rho A) \rho W, 0 J 1 \times W \leftarrow^{-} 12002 \times(\tau W \div 4) \div W \rho^{-1} 120 \mathrm{X}$ is $\star 0 \mathrm{~J} 1 \times X$
[8] $\mathrm{P} \leftarrow \mathbb{M}-0.5$
[9] $\mathrm{L} \leftarrow 1$
[10] \rightarrow L2
[11] L1:W↔د(C0 0) ロ[M-L]W a Reduce order of W on each loop
[12] L2:A $\leftarrow(+f A),[P-L] W x-\nmid A$ a Do the transform
[13] $\rightarrow(\mathrm{M}>\mathrm{L} \leftarrow \mathrm{L}+1) \uparrow \mathrm{L} 1$
[14] ค Do last step separately since multiply is not needed
[15] L3:Zヶ, $(+\not \subset A),[-0.5]-\nmid A$

